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Differential criterion of a bubble collapse in viscous liquids

Vladislav A. Bogoyavlenskiy*
Low Temperature Physics Department, Moscow State University, 119899 Moscow, Russia

~Received 11 January 1999!

The present work is devoted to a model of bubble collapse in a Newtonian viscous liquid caused by an initial
bubble wall motion. The obtained bubble dynamics described by an analytic solution significantly depends on
the liquid and bubble parameters. The theory gives two types of bubble behavior: collapse and viscous
damping. This results in a general collapse condition proposed as the sufficient differential criterion. The
suggested criterion is discussed and successfully applied to the analysis of the void and gas bubble collapse.
@S1063-651X~99!01207-6#

PACS number~s!: 47.55.Bx, 78.60.Mq
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I. INTRODUCTION

Formation and collapse of bubbles in liquids are used
many technical applications such as sonochemistry, lit
tripsy, ultrasonic cleaning, bubble chambers, and laser
gery @1–4#. Bubble dynamics has been the subject of inte
sive theoretical and experimental studies since Lord R
leigh found the well-known analytic solution of this proble
for inviscid liquids @5#. The advanced theory of cavitatio
developed by Plesset gives the differential Rayleigh-Ple
~RP! equation for the bubble radiusR(t) @6#. The RP equa-
tion describes the dynamics of a spherical void or gas bub
in viscous liquids@7–10# and is also used as a first approx
mation in more complex problems such as cavitation n
solid boundaries@11–14#, collapse of asymmetric bubble
@15,16#, and sonoluminescence@17–23#.

The main difficulties involved in theoretical investigation
of the RP equation are that~i! the solutions can be obtaine
only numerically and~ii ! the bubble wall velocity increase
to infinity as the bubble collapses. Thus, computer simu
tions of the bubble motion take a great deal of time and m
lead to significant errors in the numerically calculated so
tions, especially when the bubble achieves superso
speeds. Unfortunately, the analytically described bubble
namics was obtained only for the collapse in inviscid liqu
@5#.

In this paper we present a way to avoid the above d
culties for viscous liquids. The concept is based on the
that the RP equation is analytically integrable in the case
the following restrictions:~i! the bubble is void and~ii ! the
ambient hydrostatic pressure is absent. The imposed res
tions are valid as the bubble collapses because the gas
the ambient pressures are negligible in comparison to
velocity pressure at the bubble wall. The model gives
analytic solution for the bubble radiusR(t) and a collapse
criterion in the differential form. This differential criterion i
considered to be a sufficient condition of the bubble colla
in viscous liquids.

The present paper is organized as follows. In Sec. II
general model of the void bubble collapse in a viscous liq
caused by an initial bubble wall motion is formulated a

*Electronic address: bogoyavlenskiy@usa.net
PRE 601063-651X/99/60~1!/504~5!/$15.00
n
-
r-
-
y-

et

le

r

-
y
-
ic
y-

-
ct
f

ic-
nd
e

n

e

e
d

solved. The subject of Sec. III is the application of the p
posed differential collapse criterion to the Rayleigh proble
in a viscous liquid and to the collapse of an air bubble
water caused by periodic acoustic pressure.

II. GENERAL MODEL

A. Problem formulation

Let us consider a void bubble immersed in an infin
Newtonian viscous liquid. We assume that the bubble is
ways spherical. Taking into account the symmetry of t
problem, we write all the equations in the spherical coor
nate system (r ,w,u) whose origin is at the center of th
bubble. Then the liquid motion is governed by the followin
equations@1#:

]s rr

]r
1

2s rr 2suu2sww

r
5rS ]v r

]t
1

1

2

]v r
2

]r D , ~1!

]v r

]r
12

v r

r
50, ~2!

s rr 52p12m
]v r

]r
, suu5sww52p12m

v r

r
, ~3!

wherer is the radial coordinate,v r is the radial liquid veloc-
ity, r5const is the liquid density,s is the stress tensor,p is
the hydrostatic pressure, andm5const is the shear viscosity
For this set of equations to be complete, we add the ini
and the boundary conditions. Let us assume that the amb
pressure and the surface tension are negligible. These re
tions result in the following conditions on the bubble surfa
and at infinity:

s rr $r 5R~ t !%50, s rr $r 5`%50. ~4!

The initial conditions are chosen to be nonstandard. Usu
the initial bubble wall motion is ignored, but in this mod
the bubble is considered to have a radial velocityV0:

R$t50%5R0 ,
dR

dt
$t50%52V0 . ~5!
504 ©1999 The American Physical Society



e
se
-

n

e

d

ic
ui
th

s.
e

on-
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The system of Eqs.~1!–~5! completely describes th
model. To find the solution, let us use the method propo
by Rayleigh@5#. According to the incompressibility condi
tion given by Eq.~2!, the radial liquid velocity can be written
as

v r5
dR

dt S R

r D 2

. ~6!

After the substitution of Eqs.~3! and~6! into Eq. ~1! and its
subsequent integration in the range (R,`) we write the ex-
pression

E
R

`S ]s rr

]r
2

12mR2

r 4

dR

dt D dr5rE
R

`FR2

r 2

d2R

dt2
1

2R

r 2 S dR

dt D
2

2
2R4

r 5 S dR

dt D
2Gdr. ~7!

Taking into account Eq.~4!, we obtain the modified RP
equation where the initial conditions are given by Eq.~5!:

R
d2R

dt2
1

3

2 S dR

dt D
2

1
4m

rR

dR

dt
50. ~8!

B. Solution and analysis

Let us define the following dimensionless variables a
constants:

R̃[
R

R0
, t̃[t

V0

R0
, m̃[

m

rR0V0
, a[

1

8m̃
21. ~9!

HereR̃, t̃ , andm̃ are the dimensionless bubble radius, tim
and viscosity, respectively. Then Eqs.~8! and ~5! can be
represented as

R̃
d2R̃

d t̃2
1

3

2 S dR̃

d t̃
D 2

1
4m̃

R̃

dR̃

d t̃
50,

R̃$ t̃ 50%51,
dR̃

d t̃
$ t̃ 50%521. ~10!

The differential equation~10! is integrable and the obtaine
analytic solution is the following:

t̃ 52~a11!S 1

4
~12R̃2!2

a

3
~12R̃3/2!

1
a2

2
~12R̃!2a3~12R̃1/2!2a4 ln

a1R̃1/2

a11
D . ~11!

The most illustrative way to discuss the bubble dynam
is by analysis of the kinetic energy accumulated by the liq
near the bubble wall. The dimensionless expression of
energy is given by the relation
d

d

,

s
d
is

Ẽ[R̃2S dR̃

d t̃
D 2

5
R̃2

~a11!2S 2R̃1aR̃1/22a21a3R̃21/22
a4R̃21/2

a1R̃1/2D 2 .

~12!

The bubble collapse corresponds to the conditionẼ→`.
The overall picture of the bubble behavior given by Eq

~11! and~12! is summarized by Fig. 1, which shows the tim
dependence of the bubble radiusR̃( t̃ ) @Fig. 1~a!# and the
accumulated energyẼ( t̃ ) @Fig. 1~b!#. The behavior of the
curves significantly depends on the value of the dimensi
less viscositym̃. Analysis of Eq.~11! shows that the bubble
radiusR̃( t̃ ) decreases to zero only ifm̃, 1

8 . In this case, the
accumulated energyẼ( t̃ ) increases to infinity. That is, the
bubble collapse takes place:

FIG. 1. Bubble radiusR̃ ~a! and accumulated energyẼ ~b! as

functions of timet̃ . Values of parameterm̃ are shown at curves.
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lim
R̃→0

Ẽ5
a2

~a11!2
lim
R̃→0

1

R̃
5`. ~13!

Analysis of the bubble motion atR̃( t̃ )→0 gives the fol-
lowing approximation formula:

R̃5S 5a

2~a11!
~ t̃ 2 t̃ C! D 2/5

, ~14!

t̃ C[ t̃ $R̃50%52~a11!S 1

4
2

a

3
1

a2

2
2a32a4 ln

a

a11D .

~15!

Here t̃ C is the collapse time, which varies from 0.4 (m̃

→0) to 0.5 (m̃5 1
8 ). The bubble dynamics described by Eq

~14! and~15! is basically similar to one obtained by Rayleig
@5#.

The other casem̃. 1
8 corresponds to the viscous dampin

The bubble radiusR̃( t̃ ) smoothly decreases to the equili
rium valueR̃eq and the accumulated energyẼ( t̃ ) descends to
zero:

R̃eq5a25S 1

8m̃
21D 2

, ~16!

lim
R̃→R̃eq

Ẽ5
1

a2~a11!2
lim

R̃→R̃eq

~R̃1/21a!250. ~17!

III. APPLICATIONS OF THEORY

The condition of the bubble collapsem̃, 1
8 is the main

result obtained in the preceding section. Let us rewrite
inequality as

S 2
dR

dt
$R5R0% D rR0

8m
.1. ~18!

We should emphasize the special features of the model
sented that result from the boundary conditions. The ab
inequality contains only one variableR(t) and two liquid
constantsr andm. Moreover, Eq.~18! is a local, differential
condition, which means there is no information about
preceding bubble motion. The condition~18! is insensitive to
the substitutionR0↔R(t). Thus, the above collapse cond
tion can be represented as

c̃~ t !.1, c̃~ t ![S 2
dR~ t !

dt D rR~ t !

8m
, ~19!

wherec̃(t) is the dimensionlesscollapse variable.
The physics of the differential condition~19! is quite

simple. Let us focus on a bubble motion governed by
system of equations~1!–~3! ~see Sec. II! in the presence o
an ambient hydrostatic pressure and a gas pressure insid
bubble. Instead of the curveR(t), the behavior of the curve
c̃(t) is analyzed. If the value ofc̃(t) achieves the numbe
one, the collapse takes place. This is the sufficient condi
for a void bubble, since the ambient hydrostatic press
.
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additionally forces the bubble to the collapse. The case of
gas bubble is more complicated because the gas pres
slows down the bubble wall motion. However, in most cas
the gas pressure is negligible in comparison to the velo
pressure as the criterion~19! is realized. Two applications o
the proposed criterion are presented below.

A. Rayleigh’s problem in a viscous liquid

The Rayleigh problem is the study of void bubble moti
in a liquid caused by a constant ambient pressure@5#. In this
case the boundary and initial conditions are transform
from Eqs.~4! and ~5! to the following:

s rr $r 5R%50, s rr $r 5`%5p0 , ~20!

R$t50%5R0 ,
dR

dt
$t50%50, ~21!

where p05const is the ambient hydrostatic pressure. Af
repeating the sequence of procedures described in Sec. I
obtain the RP equation@6#

R
d2R

dt2
1

3

2 S dR

dt D
2

1
4m

rR

dR

dt
52

p0

r
. ~22!

The problem has the well-known analytic solution for i
viscid liquids found by Rayleigh in 1917@5#. In the case of a
Newtonian viscous liquid, the numerical solution was o
tained by Zababakhin@10#. The computer simulations of th
bubble motion show two types of bubble behavior: a collap
and a smooth decrease, where the collapse condition ca
written as

m̃p,0.119, m̃p[
m

R0Arp0

. ~23!

To illustrate the advantages of the differential criteri
~19! obtained, the time dependence of the bubble radiusR(t)
and the collapse variablec̃(t) at various values ofm̃p are
presented in Fig. 2. Calculation of the bubble radiusR(t)
shows that the critical value ofm̃p corresponding to the col
lapse criterion lies within the interval 0.1–0.12@see Fig.
2~a!#. More precise estimates are hampered by instabili
and errors in the numerical procedure asR(t)→0.

We propose finding the collapse condition by analyzi
the collapse variablec̃(t) @see Fig. 2~b!#. When the maxi-
mum of the curvec̃(t) is less than 1, the curve correspon
to the viscous damping of the bubble wall motion. T
bubble collapse is realized when the curvec̃(t) exceeds 1.
The c̃(t) analysis significantly reduces the numerical error
comparison to theR(t) analysis. This results in the mos
precise collapse criterion:

m̃p,~0.114 6360.000 01!. ~24!

B. Collapse of an air bubble in water caused by sound

The condition we consider is an air bubble in water su
jected to a periodic spherical sound wave of ultrasonic f
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quency @7,8#. Assuming the symmetry is spherical, th
bubble radiusR(t) obeys the following equations:

R
d2R

dt2
1

3

2 S dR

dt D
2

1
4m

rR

dR

dt

5
pg2pa2p0

r
1

R

rc

d

dt
~pg2pa!, ~25!

R$t50%5R0 ,
dR

dt
$t50%50. ~26!

Here R0 is the equilibrium bubble radius,r is the water
density,m is the shear viscosity of the water,c is the speed
of sound in water, andp05const is the ambient hydrostat
pressure. The acoustic pressurepa is considered to be peri
odic:

FIG. 2. Bubble radiusR/R0 ~a! and collapse variablec̃ ~b! as

functions of timet/t0 wheret0[R0Ar/p0. Values of parameterm̃p

are shown at curves. The dotted line corresponds to the coll

criterion c̃(t)51.
pa52pa
0 sin 2pvt, ~27!

wherepa
0 andv are the amplitude and the frequency of t

sound wave, respectively. Assuming adiabatic conditions
side the bubble, the gas pressurepg follows from the van der
Waals equation,

pg5p0S R0
32a3

R32a3D g

, ~28!

wherea is the van der Waals hard core andg is the ratio of
specific heats.

The set of equations~25!–~28! describes the nonlinea
bubble oscillations that can concentrate the average so

se

FIG. 3. Bubble radiusR ~a! and collapse variablec̃ ~b! as func-
tions of timet during one acoustic period. These are results for
following parameters:r51.0 g/cm,c51481 m/s,m50.07 g/(cm
•s), R054.5 mm, R0 /a58.5, g51.4, v526.5 kHz,p051.0 atm.
Curves 1 and 2 correspond topa

050.98 atm andpa
051.06 atm, re-

spectively. The dotted line corresponds to the collapse crite

c̃(t)51.
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energy by over 12 orders of magnitude@19#. During the
acoustic cycle the bubble absorbs the energy from the so
field and its radius expands from the equilibrium valueR0 to
a maximum value. The subsequent compressional part o
sound field causes the bubble to collapse. Heating of
bubble surface caused by the compression may lead to
emission of a pulse of light as the bubble approaches a m
mum radius. This phenomenon is known as sonolumin
cence@3,4#.

Let us illustrate the application of the collapse criteri
~19! to this problem. The calculations of the bubble moti
are performed for an air bubble in water where all the val
of the parameters in Eqs.~25!–~28! are taken from Refs
@20–22#. For this problem the bubble behavior is basica
governed by the amplitude of the acoustic pressurepa

0 and by
the equilibrium bubble radiusR0. Let us consider thatR0
5const. Therefore, the only variable of the problem is
amplitude of the sound wavepa

0 .
The calculated bubble radiusR(t) and the criterion vari-

ablec̃(t) at various values ofpa
0 are presented in Fig. 3. Th

figure shows that the features of the bubble oscillations
determined by the behavior ofc̃(t). The viscous damping
n
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@curve 1 in Fig. 3~a!# corresponds to the inequalityc̃(t),1
during the acoustic cycle@curve 1 in Fig. 3~b!#. As a result,
the sound wave energy dissipates only by the shear visco
of the water. Thus, the increase of the air temperature in
the bubble is negligible. The bubble behavior significan
changes whenc̃(t) exceeds 1@curve 2 in Fig. 3~b!#. In this
case the acoustic energy is focused on the bubble and c
presses the air within it to high pressures and temperat
@curve 2 in Fig. 3~a!#.

It is significant that the bubble collapse is not the su
cient condition for sonoluminescense. The emission of li
occurs only when the energy of the sound field achieve
critical value. For this set of parameters the focused ene
drastically increases with the increase ofpa

0 . The edge of
sonoluminescence corresponds to the value ofpa

0;1.2 atm
@20#.
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